Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Med Microbiol Immunol ; 212(3): 221-229, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20235475

ABSTRACT

Pattern recognition receptors of the innate immune system, such as RIG-I and MDA5, are responsible for recognizing viruses and inducing interferon production. Genetic polymorphisms in the coding regions of RLR may be associated with the severity of COVID-19. Considering the contribution of the RLR signaling in immune-mediated reactions, this study investigated the association between three SNP in the coding region of IFIH1 and DDX58 genes with the susceptibility to COVID-19 in the Kermanshah population, Iran. 177 patients with severe and 182 with mild COVID-19 were admitted for this study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of two SNPs, rs1990760(C>T) and rs3747517(T>C) IFIH1 gene and rs10813831(G>A) DDX58 gene using PCR-RFLP method. Our results showed that the frequency of the AA genotype of rs10813831(G>A) was associated with susceptibility to COVID-19 compared to the GG genotype (p = 0.017, OR = 2.593, 95% CI 1.173-5.736). We also observed a statistically significant difference in the recessive model for SNPs rs10813831 variant (AA versus GG + GA, p = 0.003, OR = 2.901, 95% CI 1.405-6.103). Furthermore, No significant association was found between rs1990760 (C>T) and rs3747517(T>C) of IFIH1 gene polymorphisms with COVID-19. Our findings suggest that DDX58 rs10813831(A>G) polymorphism may be associated with COVID-19 severity in the Kermanshah population, Iran.


Subject(s)
COVID-19 , DEAD-box RNA Helicases , Humans , Interferon-Induced Helicase, IFIH1/genetics , DEAD-box RNA Helicases/genetics , Genetic Predisposition to Disease , COVID-19/genetics , Genotype , Polymorphism, Single Nucleotide , DEAD Box Protein 58/genetics , Receptors, Immunologic/genetics
2.
J Neuroinflammation ; 19(1): 267, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2108803

ABSTRACT

BACKGROUND: Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. METHODS: Wild-type (WT) and Trem2 deficient (Trem2-/-) mice were infected with a sublethal glia tropic murine coronavirus (MHV-JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. RESULTS: BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2-/- mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. CONCLUSIONS: Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments.


Subject(s)
Brain , Demyelinating Diseases , Animals , Mice , Brain/metabolism , Phagocytosis/genetics , Microglia/metabolism , Demyelinating Diseases/chemically induced , Disease Progression , Gene Expression , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
3.
Emerg Infect Dis ; 28(11): 2350-2352, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054902

ABSTRACT

A heterozygous nonsense variant in the TIGIT gene was identified in a patient in Thailand who had severe COVID-19, resulting in lower TIGIT expression in T cells. The patient's T cells produced higher levels of cytokines upon stimulation. This mutation causes less-controlled immune responses, which might contribute to COVID-19 severity.


Subject(s)
COVID-19 , Receptors, Immunologic , Humans , COVID-19/genetics , Cytokines/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2 , Thailand/epidemiology , Codon, Nonsense
4.
Nat Commun ; 13(1): 4830, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2000885

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/epidemiology , COVID-19/genetics , Humans , Japan/epidemiology , Lectins, C-Type/genetics , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptors, Immunologic/genetics
5.
Methods Mol Biol ; 2453: 297-316, 2022.
Article in English | MEDLINE | ID: covidwho-1935746

ABSTRACT

Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.


Subject(s)
Receptors, Immunologic , Software , Receptors, Immunologic/genetics
6.
Nat Immunol ; 23(4): 632-642, 2022 04.
Article in English | MEDLINE | ID: covidwho-1751737

ABSTRACT

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


Subject(s)
COVID-19 , Interferon Type I , Gene Regulatory Networks , Humans , Interferon Type I/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2 , T-Lymphocytes
7.
Genes (Basel) ; 13(1)2021 12 23.
Article in English | MEDLINE | ID: covidwho-1580896

ABSTRACT

ADAR1-mediated deamination of adenosines in long double-stranded RNAs plays an important role in modulating the innate immune response. However, recent investigations based on metatranscriptomic samples of COVID-19 patients and SARS-COV-2-infected Vero cells have recovered contrasting findings. Using RNAseq data from time course experiments of infected human cell lines and transcriptome data from Vero cells and clinical samples, we prove that A-to-G changes observed in SARS-COV-2 genomes represent genuine RNA editing events, likely mediated by ADAR1. While the A-to-I editing rate is generally low, changes are distributed along the entire viral genome, are overrepresented in exonic regions, and are (in the majority of cases) nonsynonymous. The impact of RNA editing on virus-host interactions could be relevant to identify potential targets for therapeutic interventions.


Subject(s)
Adenosine Deaminase/genetics , COVID-19/genetics , Genome, Viral , Host-Pathogen Interactions/genetics , RNA Editing , RNA, Viral/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Adenosine/metabolism , Adenosine Deaminase/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Deamination , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Inosine/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/genetics , Interferon-beta/immunology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , RNA, Viral/immunology , RNA-Binding Proteins/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Transcriptome , Vero Cells
8.
Eur J Neurol ; 28(8): 2603-2613, 2021 08.
Article in English | MEDLINE | ID: covidwho-1518029

ABSTRACT

BACKGROUND AND PURPOSE: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD. METHOD: Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory and radiological data were retrieved and analyzed. RESULTS: The presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1 ± 4.97 years and the mean duration of the disease was 8.9 ± 3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in computed tomography of the brain. Magnetic resonance imaging of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei and periventricular white matter changes in all patients. Symmetrical global atrophy of the brain mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of the hippocampus. Cerebrospinal fluid examination of 10 patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients. CONCLUSION: A combination of white matter changes, enlarged ventricles, atrophy of the caudate nuclei and thinning of the corpus callosum in magnetic resonance imaging strongly suggests NHD in patients with FTD syndrome. Molecular genetic analysis should be performed in suspected cases, and families should receive genetic counseling.


Subject(s)
Frontotemporal Dementia , Lipodystrophy , Membrane Glycoproteins/genetics , Osteochondrodysplasias , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis , Adult , Brain/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Magnetic Resonance Imaging , Neuroimaging
9.
Acc Chem Res ; 54(21): 4012-4023, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1483069

ABSTRACT

In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used with caution because of their immunogenicity, which is in part triggered by double-stranded RNA (dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead to undesirable consequences, including suppression of protein synthesis and cell death, which in turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.Our lab has been investigating the mechanisms by which the innate immune system discriminates between "self" and "nonself" RNA, with the focus on the cytoplasmic dsRNA receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have biochemically and structurally characterized critical events involving RNA discrimination and signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose future directions for improving IVT as a method to generate both research tools and therapeutics. Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) and 2',5'-oligoadenylate synthetases (OASes), illustrating the feature of protein-RNA binding and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, including optimizations of RNA polymerases, reagents, and experimental conditions during IVT and subsequent purification.


Subject(s)
RNA, Viral/immunology , SARS-CoV-2/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , RNA, Viral/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2/immunology
10.
mBio ; 12(5): e0233521, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1430167

ABSTRACT

Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic with astonishing mortality and morbidity. The high replication and transmission of SARS-CoV-2 are remarkably distinct from those of previous closely related coronaviruses, and the underlying molecular mechanisms remain unclear. The innate immune defense is a physical barrier that restricts viral replication. We report here that the SARS-CoV-2 Nsp5 main protease targets RIG-I and mitochondrial antiviral signaling (MAVS) protein via two distinct mechanisms for inhibition. Specifically, Nsp5 cleaves off the 10 most-N-terminal amino acids from RIG-I and deprives it of the ability to activate MAVS, whereas Nsp5 promotes the ubiquitination and proteosome-mediated degradation of MAVS. As such, Nsp5 potently inhibits interferon (IFN) induction by double-stranded RNA (dsRNA) in an enzyme-dependent manner. A synthetic small-molecule inhibitor blunts the Nsp5-mediated destruction of cellular RIG-I and MAVS and processing of SARS-CoV-2 nonstructural proteins, thus restoring the innate immune response and impeding SARS-CoV-2 replication. This work offers new insight into the immune evasion strategy of SARS-CoV-2 and provides a potential antiviral agent to treat CoV disease 2019 (COVID-19) patients. IMPORTANCE The ongoing COVID-19 pandemic is caused by SARS-CoV-2, which is rapidly evolving with better transmissibility. Understanding the molecular basis of the SARS-CoV-2 interaction with host cells is of paramount significance, and development of antiviral agents provides new avenues to prevent and treat COVID-19 diseases. This study describes a molecular characterization of innate immune evasion mediated by the SARS-CoV-2 Nsp5 main protease and subsequent development of a small-molecule inhibitor.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus 3C Proteases/metabolism , DEAD Box Protein 58/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , A549 Cells , Adaptor Proteins, Signal Transducing/genetics , Animals , Caco-2 Cells , Coronavirus 3C Proteases/genetics , DEAD Box Protein 58/genetics , Enzyme-Linked Immunosorbent Assay , HCT116 Cells , HEK293 Cells , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Immunoblotting , Interferon Type I/metabolism , Mice , Receptors, Immunologic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Ubiquitination , Virus Replication/genetics , Virus Replication/physiology
11.
Mil Med Res ; 8(1): 49, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398883

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication. The expression of the type I/III interferon (IFN) during infection was impaired in MDA5-/- and MAVS-/-, but not in RIG-I-/-, when compared to wild type (WT) cells. The mRNA level of full-length angiotensin-converting enzyme 2 (ACE2), the cellular entry receptor for SARS-CoV-2, was ~ 2.5-fold higher in RIG-I-/- than WT cells. These data demonstrate MDA5 as the predominant SARS-CoV-2 sensor, IFN-independent induction of ACE2 and anti-SARS-CoV-2 role of RIG-I in epithelial cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/immunology , DEAD Box Protein 58/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/physiology , Adaptor Proteins, Signal Transducing/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Line , DEAD Box Protein 58/genetics , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferons/metabolism , Receptors, Immunologic/genetics , Signal Transduction , Virus Replication , Interferon Lambda
12.
J Med Virol ; 93(9): 5376-5389, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363676

ABSTRACT

The suppression of types I and III interferon (IFN) responses by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to the pathogenesis of coronavirus disease 2019 (COVID-19). The strategy used by SARS-CoV-2 to evade antiviral immunity needs further investigation. Here, we reported that SARS-CoV-2 ORF9b inhibited types I and III IFN production by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of types I and III IFNs by Sendai virus and poly (I:C). SARS-CoV-2 ORF9b inhibited the activation of types I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε, rather than IRF3-5D, which is the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of types I and III IFNs by TRIF and STING, which are the adaptor protein of the endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of the cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. A mechanistic analysis revealed that the SARS-CoV-2 ORF9b protein interacted with RIG-I, MDA-5, MAVS, TRIF, STING, and TBK1 and impeded the phosphorylation and nuclear translocation of IRF3. In addition, SARS-CoV-2 ORF9b facilitated the replication of the vesicular stomatitis virus. Therefore, the results showed that SARS-CoV-2 ORF9b negatively regulates antiviral immunity and thus facilitates viral replication. This study contributes to our understanding of the molecular mechanism through which SARS-CoV-2 impairs antiviral immunity and provides an essential clue to the pathogenesis of COVID-19.


Subject(s)
DEAD Box Protein 58/immunology , Immune Evasion/genetics , Interferons/immunology , Nucleotidyltransferases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/immunology , Animals , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Nucleotidyltransferases/genetics , Phosphoproteins/genetics , Phosphoproteins/immunology , Plasmids/chemistry , Plasmids/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 3/genetics , Transfection , Vero Cells , Virus Replication/immunology
13.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1347527

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Subject(s)
Acetates/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Membrane Glycoproteins/genetics , Microglia/drug effects , Phenols/pharmacology , Receptors, Immunologic/genetics , Retinoid X Receptors/genetics , Thyroid Hormones/pharmacology , Acetates/chemical synthesis , Animals , Binding Sites , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Humans , Immunity, Innate , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Models, Molecular , Phenols/chemical synthesis , Phenoxyacetates/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Response Elements , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Signal Transduction
14.
Viruses ; 13(8)2021 07 23.
Article in English | MEDLINE | ID: covidwho-1325791

ABSTRACT

A weak production of INF-ß along with an exacerbated release of pro-inflammatory cytokines have been reported during infection by the novel SARS-CoV-2 virus. SARS-CoV-2 encodes several proteins able to counteract the host immune system, which is believed to be one of the most important features contributing to the viral pathogenesis and development of a severe clinical picture. Previous reports have demonstrated that SARS-CoV-2 N protein, along with some non-structural and accessory proteins, efficiently suppresses INF-ß production by interacting with RIG-I, an important pattern recognition receptor (PRR) involved in the recognition of pathogen-derived molecules. In the present study, we better characterized the mechanism by which the SARS-CoV-2 N counteracts INF-ß secretion and affects RIG-I signaling pathways. In detail, when the N protein was ectopically expressed, we noted a marked decrease in TRIM25-mediated RIG-I activation. The capability of the N protein to bind to, and probably mask, TRIM25 could be the consequence of its antagonistic activity. Furthermore, this interaction occurred at the SPRY domain of TRIM25, harboring the RNA-binding activity necessary for TRIM25 self-activation. Here, we describe new findings regarding the interplay between SARS-CoV-2 and the IFN system, filling some gaps for a better understanding of the molecular mechanisms affecting the innate immune response in COVID-19.


Subject(s)
COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Transcription Factors/immunology , Tripartite Motif Proteins/immunology , Ubiquitin-Protein Ligases/immunology , COVID-19/genetics , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , DEAD Box Protein 58/genetics , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/immunology , Promoter Regions, Genetic , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , Signal Transduction , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
15.
PLoS Pathog ; 17(6): e1009662, 2021 06.
Article in English | MEDLINE | ID: covidwho-1259253

ABSTRACT

Signal-regulatory protein alpha (SIRPA) is a well-known inhibitor of phagocytosis when it complexes with CD47 expressed on target cells. Here we show that SIRPA decreased in vitro infection by a number of pathogenic viruses, including New World and Old World arenaviruses, Zika virus, vesicular stomatitis virus and pseudoviruses bearing the Machupo virus, Ebola virus and SARS-CoV-2 glycoproteins, but not HSV-1, MLV or mNoV. Moreover, mice with targeted mutation of the Sirpa gene that renders it non-functional were more susceptible to infection with the New World arenaviruses Junín virus vaccine strain Candid 1 and Tacaribe virus, but not MLV or mNoV. All SIRPA-inhibited viruses have in common the requirement for trafficking to a low pH endosomal compartment. This was clearly demonstrated with SARS-CoV-2 pseudovirus, which was only inhibited by SIRPA in cells in which it required trafficking to the endosome. Similar to its role in phagocytosis inhibition, SIRPA decreased virus internalization but not binding to cell surface receptors. We also found that increasing SIRPA levels via treatment with IL-4 led to even greater anti-viral activity. These data suggest that enhancing SIRPA's activity could be a target for anti-viral therapies.


Subject(s)
Endocytosis , RNA Viruses/immunology , Receptors, Immunologic/physiology , Virus Internalization , Animals , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/virology , Chlorocebus aethiops , Drug Delivery Systems , Integrins/immunology , Interleukin-4/pharmacology , Mice , Mice, Knockout , Protein Domains , Receptors, Immunologic/genetics , Vero Cells
16.
Biochem J ; 478(10): 1853-1859, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1232077

ABSTRACT

The current SARS-CoV-2 pandemic has spurred new interest in interferon signaling in response to viral pathogens. Much of what we know about the signaling molecules and associated signal transduction induced during the host cellular response to viral pathogens has been gained from research conducted from the 1990's to the present day, but certain intricacies of the mechanisms involved, still remain unclear. In a recent study by Vaughn et al. the authors examine one of the main mechanisms regulating interferon induction following viral infection, the RIG-I/MAVS/IRF3 pathway, and find that similar to PKR both DICER interacting proteins, PACT and TRBP, regulate RIG-I signaling in an opposing manner. More specifically, the reported findings demonstrate, like others, that PACT stimulates RIG-I-mediated signaling in a manner independent of PACT dsRNA-binding ability or phosphorylation at sites known to be important for PACT-dependent PKR activation. In contrast, they show for the first time that TRBP inhibits RIG-I-mediated signaling. RIG-I inhibition by TRBP did not require phosphorylation of sites shown to be important for inhibiting PKR, nor did it involve PACT or PKR, but it did require the dsRNA-binding ability of TRBP. These findings open the door to a complex co-regulation of RIG-I, PKR, MDA5, miRNA processing, and interferon induction.


Subject(s)
COVID-19/immunology , Interferons/metabolism , SARS-CoV-2/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/virology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
17.
Cell Rep ; 35(6): 109091, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1213072

ABSTRACT

It is urgent and important to understand the relationship of the widespread severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) with host immune response and study the underlining molecular mechanism. N6-methylation of adenosine (m6A) in RNA regulates many physiological and disease processes. Here, we investigate m6A modification of the SARS-CoV-2 gene in regulating the host cell innate immune response. Our data show that the SARS-CoV-2 virus has m6A modifications that are enriched in the 3' end of the viral genome. We find that depletion of the host cell m6A methyltransferase METTL3 decreases m6A levels in SARS-CoV-2 and host genes, and m6A reduction in viral RNA increases RIG-I binding and subsequently enhances the downstream innate immune signaling pathway and inflammatory gene expression. METTL3 expression is reduced and inflammatory genes are induced in patients with severe coronavirus disease 2019 (COVID-19). These findings will aid in the understanding of COVID-19 pathogenesis and the design of future studies regulating innate immunity for COVID-19 treatment.


Subject(s)
COVID-19/genetics , Methyltransferases/metabolism , SARS-CoV-2/genetics , Adenosine/metabolism , COVID-19/metabolism , Cell Line , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate/genetics , Methylation , Methyltransferases/genetics , RNA, Viral/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction
18.
Cells ; 10(3)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1125490

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) that has resulted in the current pandemic. The lack of highly efficacious antiviral drugs that can manage this ongoing global emergency gives urgency to establishing a comprehensive understanding of the molecular pathogenesis of SARS-CoV-2. We characterized the role of the nucleocapsid protein (N) of SARS-CoV-2 in modulating antiviral immunity. Overexpression of SARS-CoV-2 N resulted in the attenuation of retinoic acid inducible gene-I (RIG-I)-like receptor-mediated interferon (IFN) production and IFN-induced gene expression. Similar to the SARS-CoV-1 N protein, SARS-CoV-2 N suppressed the interaction between tripartate motif protein 25 (TRIM25) and RIG-I. Furthermore, SARS-CoV-2 N inhibited polyinosinic: polycytidylic acid [poly(I:C)]-mediated IFN signaling at the level of Tank-binding kinase 1 (TBK1) and interfered with the association between TBK1 and interferon regulatory factor 3 (IRF3), subsequently preventing the nuclear translocation of IRF3. We further found that both type I and III IFN production induced by either the influenza virus lacking the nonstructural protein 1 or the Zika virus were suppressed by the SARS-CoV-2 N protein. Our findings provide insights into the molecular function of the SARS-CoV-2 N protein with respect to counteracting the host antiviral immune response.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , DEAD Box Protein 58/metabolism , Interferons/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2/metabolism , DEAD Box Protein 58/genetics , Host-Pathogen Interactions/genetics , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferons/genetics , Orthomyxoviridae/genetics , Orthomyxoviridae/metabolism , Phosphoproteins/metabolism , Poly C/pharmacology , Poly I/pharmacology , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Immunologic/genetics , SARS-CoV-2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Up-Regulation , Zika Virus/genetics , Zika Virus/metabolism
19.
Cell Mol Immunol ; 18(4): 945-953, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104474

ABSTRACT

SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-ß promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.


Subject(s)
COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , SARS-CoV-2/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Mutation , Phosphorylation , Promoter Regions, Genetic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , SARS-CoV-2/enzymology , Sendai virus/metabolism
20.
Virus Res ; 299: 198347, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1096265

ABSTRACT

BACKGROUND: There is a marked discrepancy between SARS-CoV-2 seroprevalence and COVID-19 cases and deaths in Africa. MAIN: SARS-CoV-2 stimulates humoral and cellular immunity systems, as well as mitogen-activated protein kinase (MAPK) and nuclear NF-kB signalling pathways, which regulate inflammatory gene expression and immune cell differentiation. The result is pro-inflammatory cytokines release, hyperinflammatory condition, and cytokine storm, which provoke severe lung alterations that can lead to multi-organ failure in COVID-19. Multiple genetic and immunologic factors may contribute to the severity of COVID-19 in African individuals when compared to the rest of the global population. In this article, the role of malaria, NF-kB and MAPK pathways, caspase-12 expression, high level of LAIR-1-containing antibodies, and differential glycophorins (GYPA/B) expression in COVID-19 are discussed. CONCLUSION: Understanding pathophysiological mechanisms can help identify target points for drugs and vaccines development against COVID-19. To our knowledge, this is the first study that explores this link and proposes a biological and molecular answer to the epidemiologic discrepancy in COVID-19 in Africa.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Malaria/genetics , Malaria/immunology , Africa/epidemiology , COVID-19/epidemiology , COVID-19/ethnology , Caspase 12/genetics , Caspase 12/immunology , Glycophorins/genetics , Glycophorins/immunology , Humans , Malaria/epidemiology , Malaria/ethnology , NF-kappa B/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL